On S-duality and 6d CFTs

Seok Kim

(Seoul National University)

Autumn symposium on string theory, KIAS Sep 12, 2017

Talk based on:

SK, June Nahmgoong, "Asymptotic M5-brane entropy from S-duality" 1702.04058.

+ more works in (slow) progress

Some related works:

Billo, Frau, Fucito, Lerda, Morales,

"S-duality and the prepotential in N=2* theories (I): the ADE algebras" 1507.07709.

Haghighat, Iqbal, Kozcaz, Lockhart, Vafa, "M-strings" 1305.6322.

Di Pietro, Komargodski, "Cardy formulae for SUSY theories in d=4 and d=6" 1407.6061.

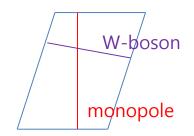
Galakhov, Mironov, Morozov,

"S-duality & modular transformation as a non-perturbative deformation of the ordinary pq-duality" 1311.7069.

S-duality

- Relation between two interacting QFTs w/ coupling constants inversed.
- 3+1d gauge theories: electric-magnetic duality
- Simple example: maximal super-Yang-Mills [Montonen, Olive] [Osborn]
- Evidences: dyon spectrum [Sen], various partition functions [Vafa, Witten] ..., etc.
- Accounted for by embedding into bigger systems
- D3's on type IIB: consequence of S-duality of IIB string theory
- A smaller embedding, in QFT: 6d N=(2,0) QFT (e.g. on M5's) on T^2

complex structure
$$\tau = \frac{\theta}{2\pi} + \frac{4\pi i}{g_{YM}^2} \sim 4$$
d coupling constant

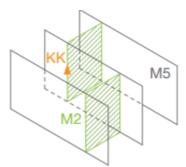


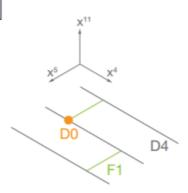
- Tied to subtle properties of 6d QFTs
- 6d (2,0) theory has been a guidance to S-duality. Can it be true the other way?

The observable

- N M5's on S¹: an index for BPS states in the tensor branch. $Z[R^4 \times T^2]$
- bound states of wrapped self-dual strings & momenta

$$Z(\tau, m, \epsilon_{1,2}, v) = \text{Tr}\left[(-1)^F e^{2\pi i \tau \frac{H+P}{2}} e^{-2\pi i \bar{\tau} \frac{H-P}{2}} e^{\epsilon_1 (J_1 + J_R) + \epsilon_2 (J_2 + J_R)} e^{2mJ_L} e^{-v_i q_i} \right]$$





IIA picture: k D0's bound to N D4's & F1's

$$Z(\tau, m, \epsilon_{1,2}, v) = Z_{\text{pert}}(m, \epsilon_{1,2}, v) \sum_{k=0}^{\infty} q^k Z_k(m, \epsilon_{1,2}, v)$$

$$Z_k = \sum_{Y_i; \sum_{i=1}^N |Y_i| = k} \prod_{i,j=1}^N \prod_{s \in Y_i} \frac{\sinh \frac{E_{ij}(s) + m - \epsilon_+}{2} \sinh \frac{E_{ij}(s) - m - \epsilon_+}{2}}{\sinh \frac{E_{ij}(s) - 2\epsilon_+}{2}}$$

[Nekrasov] (2002) [Bruzzo, Fucito, Morales, Tanzini] (2002) [Nekrasov, Okounkov] (2003) [H.-C. Kim, SK, E. Koh, K. Lee, S. Lee] (2011)

- Chemical potentials:
- τ : for left-moving momentum. (more on it on next slide)
- v_i : for winding numbers. ~ tensor/Coulomb VEV
- m: for $SU(2)_L \subset SO(5)_R$. ~ mass deformation parameter for MSYM
- $\epsilon_{1,2}$: SO(4) spatial rotations (locked w/ $SU(2)_R \subset SO(5)$). " Ω deformation" (partly IR regulator)

Using S-duality in 6d?

- A partition function on R⁴ x T² : (spatial S¹) x (temporal S¹)
- $\tau \sim i \frac{R_t}{R_s} \sim \frac{i}{T R_s}$: inverse-temperature (in KK unit). coupling const. in 4d limit
- finite T²: Is there S-duality $\tau \to -1/\tau$ (or $R_s \leftrightarrow R_t$) in the partition function?
- Connects "low & high T": useful tool to study "high T" or "decompactifying" regime
- But if $\log Z \sim N^3 \& \log Z \sim N^2$ at high/low T, hard to expect exact S-duality.
- So, natural to expect certain 'anomaly' of S-duality.
- Goal: Explore the 6d extension of 4d S-duality, and use it to study 6d physics.
- Will mostly focus on "prepotential": $Z(\tau, v, m, \epsilon_{1,2}) \sim \exp[-\frac{f(\tau, v, m)}{\epsilon_1 \epsilon_2}]$ at $\epsilon_{1,2} \to 0$.
- Can be viewed either as Seiberg-Witten action, or free energy at "large volume"
- Technically easier to study than the full partition function

4d limit: S-duality of $N = 2^*$ prepotential

S-duality in SW theory: "magnetic prepotential = same function as electric one"

$$F_D^{4d}(\tau_D, a_D, M) = \mathcal{L}[F^{4d}](\tau, a, M) = F^{4d}(\tau, a, M) - a \frac{\partial F^{4d}}{\partial a}(\tau, a, M) \qquad a_D = \frac{1}{2\pi i} \frac{\partial F}{\partial a}$$

- Expect S-duality after a suitable a decomposition

$$F^{\text{4d}}(\tau, a, M) = F^{\text{4d}}_{\text{S-dual}}(\tau, a, M) + F^{\text{4d}}_{\text{anom}}(\tau, M)$$

independent of Coulomb VEV: ambiguous in SW theory

$$F_{\text{S-dual}}^{\text{4d}}(\tau_D, a_D, M) = F_{\text{S-dual}}^{\text{4d}}(\tau, a, M) - a \frac{\partial F_{\text{S-dual}}^{\text{4d}}}{\partial a}(\tau, a, M)$$

- Tested in small M expansion by summing over $q = e^{2\pi i \tau}$
- $F_{S\,dual}^{4d} (\tau, a, M) = \pi i \tau a^2 + \int_{1}^{1} dt = \pi i \tau a^2 + \sum_{n=1}^{1} M^{2n} f_n(\tau, a)$

"quantum" (=1-loop+instanton) part

can write coefficients exactly in q, using "quasi-modular forms"

6d extension

- For simplicity, first consider $M \ll a$: classical S-duality $a_D = \tau a + \frac{1}{2\pi i} \frac{\partial f}{\partial a}$
- Good in 4d: Scalar eigenvalues classically live on $C \sim R^2$.

6d tensor VEV (noncompact)

- 6d: Scalars live on
$$R \times S^1$$
. Unnatural to rotate w/ complex τ .

$$a \sim R_s(\Phi + iB_{12})$$

6d 2-form on T^2 (compact)

• Natural dimensionless variables (~ chemical potentials)

redefine to dimensionless f by absorbing R_t^2 factor

$$v \equiv R_t a$$
, $v_D \equiv \frac{R_t a_D}{\tau} = v + \frac{1}{2\pi i \tau} \frac{\partial (R_t^2 f)}{\partial v} \rightarrow v + \frac{1}{2\pi i \tau} \frac{\partial f}{\partial v}$ $m = M R_t$, $v = a R_t$

6d version of S-duality: using dimensionless variables & f (correctly reduces to 4d ones)

$$\tau^2 f\left(-\frac{1}{\tau}, \ v + \frac{1}{2\pi i \tau} \frac{\partial f}{\partial v}, \ \frac{m}{\tau}\right) = f(\tau, v, m) + \frac{1}{4\pi i \tau} \left(\frac{\partial f}{\partial v}(\tau, v, m)\right)^2$$

• Checked in same way, expanding in small m: curious 'anomaly' in S-duality

$$F_{\mathrm{anom}} = N f_{U(1)}(\tau,m) + \frac{N^3 - N}{288} m^4 E_2(\tau)$$
 After restoring R_t , the 2nd term $\propto R_t^2 M^4 (N^3 - N) \rightarrow 0$ disappears in 4d limit

- $F_{anom}(\tau, m)$ meaningless in SW theory. But in free energy, neutral states' contribution.

Alternative derivation

Expand Z w/ tensor VEVs, or fugacities e^{-v_i} for string winding #'s

$$Z(\tau,v,m,\epsilon_{1,2}) = e^{-\varepsilon_0} Z_{U(1)}(\tau,m,\epsilon_{1,2})^N \sum_{n_1,\cdots,n_{N-1}=0}^{\infty} e^{-\sum_{i=1}^{N-1} n_i \alpha_i(v)} Z_{(n_i)}(\tau,m,\epsilon_{1,2}) \equiv e^{-\varepsilon_0} Z_{U(1)}^N \hat{Z}$$
 simple roots
$$-Z_{(n_i)}(\tau,m,\epsilon_{1,2}) \colon \text{elliptic genus of self-dual strings}$$

 $Z_{(n_i)}(\tau, m, \epsilon_{1,2})$: elliptic genus of self-dual strings

[Haghighat, Igbal, Kozcaz, Lockhart, Vafa] (2013)

$$Z_{(n_i)} = \sum_{Y_1, \dots, Y_{N-1}; |Y_i| = n_i} \prod_{i=1}^{N} \prod_{s \in Y_i} \frac{\theta_1(\tau | \frac{E_{i,i+1}(s) - m + \epsilon_-}{2\pi i}) \theta_1(\tau | \frac{E_{i,i-1}(s) + m + \epsilon_-}{2\pi i})}{\theta_1(\tau | \frac{E_{i,i}(s) + \epsilon_1}{2\pi i}) \theta_1(\tau | \frac{E_{i,i}(s) - \epsilon_2}{2\pi i})}$$

Modular anomaly of elliptic genus $Z_{(n_i)}(\tau, m, \epsilon_{1,2})$: [HIKLV] (2013) $\frac{\theta_1(-\frac{1}{\tau}, \frac{z}{\tau})}{n(-\frac{1}{\tau})} = e^{\frac{\pi i z^2}{\tau}} \frac{\theta_1(\tau, z)}{n(\tau)}$

$$\frac{\theta_1(-\frac{1}{\tau},\frac{z}{\tau})}{\eta(-\frac{1}{\tau})} = e^{\frac{\pi i z^2}{\tau}} \frac{\theta_1(\tau,z)}{\eta(\tau)}$$

$$Z_{(n_i)}\left(-\frac{1}{\tau}, \frac{m}{\tau}, \frac{\epsilon_{1,2}}{\tau}\right) = \exp\left[\frac{1}{4\pi i \tau} \left(\epsilon_1 \epsilon_2 \Omega^{ij} n_i n_j - \Omega^{ij} (2m^2 - 2\epsilon_+^2) \rho_i n_j\right)\right] Z_{n_i}(\tau, m, \epsilon_{1,2})$$

 Ω^{ij} : Cartan matrix for A_{N-1} Lie algebra

$$\rho = \frac{1}{2} \sum_{\alpha > 0} \alpha$$
: Weyl vector for A_{N-1}

This determines the S-duality anomaly of $Z(\tau, v, m, \epsilon_{1,2})$, & $f(\tau, v, m)$.

Modular anomaly equation

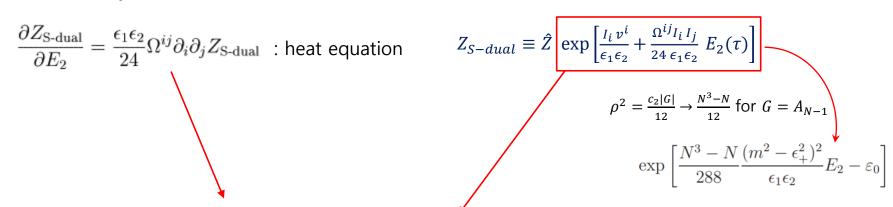
- au dependence via quasi-modular forms: $\theta_1(\tau|z) = 2\pi i z \ \eta(\tau)^3 \exp\left[\sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)(2k)!} E_{2k}(\tau)(2\pi i z)^{2k}\right]$
- 3 generators: $E_2(-1/\tau) = \tau^2 \left(E_2 + \frac{6}{\pi i \tau} \right)$, $E_4(-1/\tau) = \tau^4 E_4(\tau)$, $E_6(-1/\tau) = \tau^6 E_6(\tau)$ causes modular anomaly of $Z_{(n_i)}(\tau, m, \epsilon_{1,2})$
- modular anomaly equation:

$$\frac{\partial}{\partial E_2} Z_{(n_i)}(\tau, m, \epsilon_{1,2} : E_2) = \frac{1}{24} \left[\epsilon_1 \epsilon_2 \Omega^{ij} n_i n_j - 2\Omega^{ij} (m^2 - \epsilon_+^2) \rho_i n_j \right] Z_{(n_i)}$$

$$\hat{Z}(\tau, v, m, \epsilon_{1,2}) = \sum_{n_1, \dots, n_r = 0}^{\infty} e^{-\sum_{i=1}^r n_i \alpha_i(v)} Z_{(n_i)}$$

$$\frac{\partial \hat{Z}}{\partial E_2} = \frac{1}{24} \left[\epsilon_1 \epsilon_2 \Omega^{ij} \partial_i \partial_j + 2(m^2 - \epsilon_+^2) \Omega^{ij} \rho_i \partial_j \right] \hat{Z} \equiv \frac{1}{24} \left[\epsilon_1 \epsilon_2 \Omega^{ij} \partial_i \partial_j + 2\Omega^{ij} I_i(m, \epsilon_+) \partial_j \right] \hat{Z}$$

some manipulations: complete-square RHS



modular anomaly: "standard" anomaly + anomaly of "standard" anomaly

Z and f

• S-dual of $Z_{S dual}$ (satisfying 'heat equation') given by convoluting w/ Gaussian heat

$$\begin{aligned} & \text{kernel } (\delta \equiv \frac{6}{\pi i \tau}) \\ & Z_{\text{S-dual}} \left(-\frac{1}{\tau}, v, \frac{m}{\tau}, \frac{\epsilon_{1,2}}{\tau}; E_2(-\frac{1}{\tau}) \right) = Z_{\text{S-dual}}(\tau, v, m, \epsilon_{1,2}, E_2(\tau) + \delta) \\ & Z_{\text{S-dual}}(\tau, v, m, \epsilon_{1,2}; E_2(\tau) + \delta) = \int_{-\infty}^{\infty} \prod_{i=1}^{N} dv_i' \; K(v, v') Z_{\text{S-dual}}(\tau, v', m, \epsilon_{1,2}; E_2(\tau)) \\ & K(v, v') = \left(\frac{i\tau}{\epsilon_1 \epsilon_2} \right)^{\frac{N}{2}} \exp \left[-\frac{\pi i\tau}{\epsilon_1 \epsilon_2} (v - v')^2 \right] \end{aligned}$$

- However, for many reasons, this expression is subtle:
- Firstly, this expression is "wrong".
- 4d limit: $K(v, v') = Z[S^3]$ of T[SU(N)] QFT (S-duality domain wall) ... motivated by AGT [Hosomichi, Lee, Park] [Drukker, Gaiotto, Gomis] [Teschner]
- Why wrong? Used 'wrong' (~Weyl asymmetric) perturbative part [Galakhov, Mironov, Morozov]
- Correction to Gaussian kernel is non-perturbative in $\epsilon_{1,2} \ll 1$: prepotential OK [\rightarrow Left-over question: 6d uplift of exact S-duality kernel & defect interpretation?]
- Also, often interested in regimes where other parameters get comparable to / larger than v, where we encounter **phase transitions**. **Easier to handle in prepotential**

Prepotential revisited

'S-dual' and 'anomalous' parts: Recall that

$$Z(\tau, v, m, \epsilon_{1,2}) = e^{-\varepsilon_0} Z_{U(1)}(\tau, m, \epsilon_{1,2})^N \sum_{n_1, \dots, n_{N-1} = 0}^{\infty} e^{-\sum_{i=1}^{N-1} n_i \alpha_i(v)} Z_{(n_i)}(\tau, m, \epsilon_{1,2}) \equiv e^{-\varepsilon_0} Z_{U(1)}^N \hat{Z}$$
$$\hat{Z} = Z_{\text{S-dual}} \exp \left[\varepsilon_0 - \frac{N^3 - N}{288\epsilon_1 \epsilon_2} (m^2 - \epsilon_+^2)^2 E_2(\tau) \right]$$

• Saddle point approximation of S-duality relation for $Z_{S-dual} \sim \exp\left[-\frac{f(\tau,v,m)}{\epsilon_1\epsilon_2}\right]$:

$$\tau^2 f\left(-\frac{1}{\tau}, \ v + \frac{1}{2\pi i \tau} \frac{\partial f}{\partial v}, \ \frac{m}{\tau}\right) = f(\tau, v, m) + \frac{1}{4\pi i \tau} \left(\frac{\partial f}{\partial v}(\tau, v, m)\right)^2$$

• 'anomalous parts' in S-duality: remaining factors $\sim \exp[-\frac{F_{anom}(\tau,m)}{\epsilon_1\epsilon_2}]$

$$F_{\text{anom}} = N f_{U(1)}(\tau, m) + \frac{N^3 - N}{288} m^4 E_2(\tau)$$

- Both terms can be separately S-dualized easily, using $E_2(-1/ au)= au^2\left(E_2+rac{6}{\pi i au}
ight)$ and

$$f_{U(1)} = m^2 \left(\frac{1}{2} \log m - \frac{3}{4} + \frac{\pi i}{2} + \log \phi(\tau) \right) + \sum_{n=1}^{\infty} \frac{m^{2n+2} B_{2n}}{2n \cdot (2n+2)!} E_{2n}(\tau)$$

Asymptotic free energy of 6d (2,0) theories

Strategy: use "dual weak-coupling setting". anomalous part + 5d perturbative part

$$\tau^{2} f\left(\begin{array}{c|c} \hline 1 \\ \hline \tau \end{array}\right) v + \frac{1}{2\pi i \tau} \frac{\partial f}{\partial v}, \quad \frac{m}{\tau} \\ \hline \tau_{D} \rightarrow i0^{+} \quad v_{D} = \text{fixed} \quad m_{D} = \text{fixed} \\ \end{array}$$

- Want to keep 6d scalar small, $\Phi_D \ll T^2$: works if we keep v_D = finite
- $m_D \rightarrow 0$ is maximal SUSY enhancement point, f = 0: keep it finite to obstruct cancelation
- S-duality makes calculus easy if f on RHS can be approximated by f_{pert} (not always true)
- Results in "easy regions":

$$-\log Z \sim \frac{(f+f_{\rm anom})(\tau_D \to 0, v_D, m_D)}{\epsilon_1 \epsilon_2} \sim \frac{i}{\epsilon_1 \epsilon_2 \tau_D} \left[\frac{N^3 m_D^4}{48 \pi} - \frac{\pi N m_D^2}{12} \right] \mp \frac{N^2 m_D^3}{12} \qquad \text{for } 0 < \pm \text{Im}(m_D) < \frac{2\pi}{N}$$
 from "low T" dual perturbative part

$$-\log Z \sim \frac{(f + f_{\text{anom}})(\tau_D \to 0, v_D, m_D)}{\epsilon_1 \epsilon_2} \sim \frac{i}{\epsilon_1 \epsilon_2 \tau_D} \left[\frac{N^3 m_D^4}{48\pi} - \frac{\pi N m_D^2}{12} \right] \qquad \text{for } \operatorname{Im}(m_D) = 0$$

real m_D : Take high T & then large N. $-\log Z \propto N^3 m_D^4$. (Physics not very clear to me...)

Index → "partition function"...?

- Non-perturbative phase transitions on RHS at $\text{Im}(m_D) \to \pm \frac{2\pi}{N}$
- Bose/Fermi cancelation maximally obstructed at $m_D = \pi i (odd \ integer)$

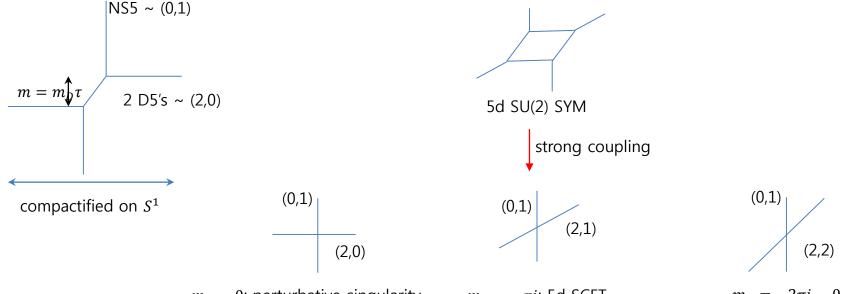
$$4\sinh\frac{x+\pi i}{2}\sinh\frac{x-\pi i}{2} = 4\cosh^2\frac{x}{2} = 2 + e^x + e^{-x}$$

$$Z(\tau, m, \epsilon_{1,2}, v) = Z_{\text{pert}}(m, \epsilon_{1,2}, v) \sum_{k=0}^{\infty} q^k Z_k(m, \epsilon_{1,2}, v)$$

all states in the index counted w/ '+' signs: would maximize the "index entropy"

$$Z_{k} = \sum_{Y_{i}:\sum_{i=1}^{N}|Y_{i}|=k} \prod_{i,j=1}^{N} \prod_{s\in Y_{i}} \frac{\sinh\frac{E_{ij}(s)+m-\epsilon_{+}}{2}\sinh\frac{E_{ij}(s)-m-\epsilon_{+}}{2}}{\sinh\frac{E_{ij}(s)}{2}\sinh\frac{E_{ij}(s)-2\epsilon_{+}}{2}}$$

- A sequence of phase transitions: $m_D = 0, -\frac{2\pi i}{N}, -\frac{4\pi i}{N}, ..., -2\pi i$
- 2 M5's on $S^1 \sim 5$ d SU(2) $N = 1^*$ (w/ instanton corrections) ~ 2 D5's forming web w/ NS5:



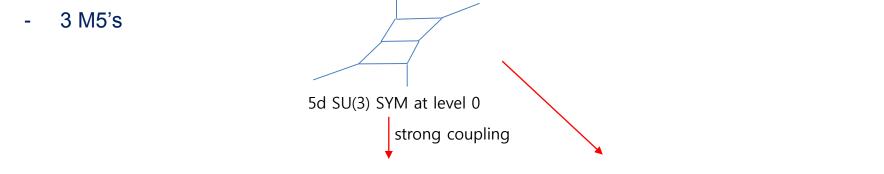
 $m_D = 0$: perturbative singularity

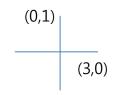
 $m_D = -\pi i$: 5d SCFT

 $m_D = -2\pi i \sim 0$

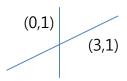
Phase transitions ~ 5d SCFTs

More phase transition sequences given by 5d SCFTs:

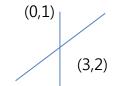




m=0: perturbative singularity



 $m = -\frac{2\pi i}{3}$: 5d SCFT



 $m = -\frac{4\pi i}{3}$: 5d SCFT

 $m=-2\pi i\sim 0$

- Similar (but more nontrivial) sequences of 5d SCFTs for $N \ge 4$ M5's

It apparently appears challenging to penetrate through the non-perturbative phase transitions to arrive at $m = -\pi i$, esp. at large N, but we are getting some progress... (and puzzles...)

A check

- Despite all the possible phase transitions, one can show that the anomalous part $\propto N^3 m_D^4$ is robust and is a direct consequence of 6d 't Hooft anomaly
- A check: [Di Pietro, Komargodski] [Banerjee, Bhattacharya, Bhattacharyya, Jain, Minwalla, Sharma]
 Some physics for "high T ~ small temporal S¹" admits 5d background fields' EFT
- 5d reduction of 6d Omega background (m, τ below mean $m_D, \tau_D...$ sorry...!)

$$ds^{2}(\mathbb{R}^{4} \times T^{2}) = \sum_{a=1,2} \left| dz_{a} - \frac{2i\epsilon_{a}}{\beta} z_{a} dy \right|^{2} + (dx - \mu dy)^{2} + dy^{2} = e^{2\phi} (dy + a)^{2} + h_{ij} dx^{i} dx^{j}$$

$$a = \frac{1}{1 + \mu^{2} + \frac{4\epsilon_{a}^{2}|z_{a}|^{2}}{\beta^{2}}} \left(-\mu dx - \frac{2\epsilon_{a}|z_{a}|^{2}}{\beta} d\phi_{a} \right)$$

- gauge field in $U(1) \subset SU(2)_L \subset SO(5)_R$: $A_6 = \frac{2m}{\beta}$ $\mathcal{A} = -A_6a$ $\tau = \frac{\beta}{4\pi}(\mu + i) \to 0$
- 5d CS terms determined by 6d U(1) anomaly $(2\pi)^4 I_8 \rightarrow \frac{N^3}{24} F^4$

$$S_{\text{CS}}^{(2)} = -\frac{iN^3r_1}{96\pi^2} \int \left(A_6^4 a \wedge da \wedge da + 4A_6^3 \mathcal{A} \wedge da \wedge da + 6A_6^2 \mathcal{A} \wedge d\mathcal{A} \wedge da + 4A_6 \mathcal{A} \wedge d\mathcal{A} \wedge \mathcal{A} \right) + \frac{iN^3r_1}{96\pi^2} \int \left(A_6^4 a \wedge da \wedge da + 4A_6^3 \mathcal{A} \wedge da \wedge da + 6A_6^2 \mathcal{A} \wedge d\mathcal{A} \wedge da + 4A_6 \mathcal{A} \wedge d\mathcal{A} \wedge d\mathcal{A} \wedge d\mathcal{A} \right) + \frac{iN^3r_1}{96\pi^2} \int \left(A_6^4 a \wedge da \wedge da \wedge da + 4A_6^3 \mathcal{A} \wedge da + 4A_6^3 \mathcal{A} \wedge da \wedge$$

- One can argue $O(m^4)$ of $Im(-\log Z)$ is given solely from this CS term.
- Actual calculus completely agrees w/ S-duality-based studies (robust against phase transitions)

$$\operatorname{Im}(S_{\text{eff}})\Big|_{m^4} = -i\frac{N^3 m^4 \mu}{12\epsilon_1 \epsilon_2 \beta (1+\mu^2)}$$
 15

Generalization to 6d (1,0) SCFTs

- A large part of the analysis for A_{N-1} (2,0) theory is extended to all (1,0) SCFTs.
- S-duality anomaly ← modular anomaly of elliptic genus for wrapped strings
- Modular anomalies ← 2d 't Hooft anomalies on 6d self-dual strings
- 2d anomaly ← 6d anomaly: inflow [H.-C.Kim, SK, Park] [Shimizu, Tachikawa] (2016)
- 6d anomaly in tensor branch [Ohmori, Shimizu, Tachikawa, Yonekura] [Intriligator]

$$I_8 = I_8^{1\text{-loop}} + \frac{1}{2}\Omega^{ij}I_iI_j$$
 Green-Schwarz 4-form for classical anomaly in tensor branch (quadratic in field strengths $\{F\}$)

- Result (prepotential): $-\log Z(\tau, v, \{m\}) = \frac{f(\tau, v, \{m\}) + F_{\text{anom}}(\tau, \{m\})}{\epsilon_1 \epsilon_2}$

$$\tau^2 f\left(-\frac{1}{\tau},\ v+\frac{1}{2\pi i\tau}\frac{\partial f}{\partial v},\ \frac{m}{\tau}\right) = f(\tau,v,m) + \frac{1}{4\pi i\tau}\left(\frac{\partial f}{\partial v}(\tau,v,m)\right)^2$$
 GS 4-form w/ {F} replaced by corresponding masses

r: number of tensor multiplets

 Ω^{ij} : tensor multiplets' kinetic term matrix (i, j = 1, ..., r)

- Can we use it to study high T behaviors of (1,0) theories?
- If there are 5d "dual weakly-coupled regimes" at small S^1 . But usually, one finds 5d SCFTs.
- But certain Wilson line compactifications yield weakly-coupled 5d SYM

Concluding remarks

- S-duality (& its anomaly) of 6d N = (2,0) SCFTs on T^2 (in tensor branch)
- Can generalize to general 6d N = (1,0) SCFTs
- S-duality anomaly is closely related to 't Hooft anomalies
- N^3 at $T \gg 1/R_s$: growth of 5d KK fields for light D0. Partly explored but needs more study
- Computed $Im[f(\tau \to 0)] \propto N^3 m^4$ part directly from 6d anomaly
- D0-branes are key ingredients of IIA string theory which construct M-theory.
- It is natural to find their crucial roles also with M5 & N³ d.o.f.
- Future directions:
- accounting for enhanced d.o.f. (e.g. by studying $m = -\pi i$ point)
- Non-perturbative S-duality (with defect operators)
- SL(2,Z) of (2,0) & (1,1) little strings on $R^4 \times T^2$ [Hollowood, Iqbal, Vafa] [J.Kim, SK, K.Lee]
-